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The dynamics of an ensemble of linear disturbances in boundary-layer Rows at various Reynolds numbers 
is studKd thmugh an analysis of the transport equations for the mean disturbance kinetic energy and energy 
dissipation rate, Effects of adverse and favorable pressure-gradients on the disturbance dynamics are also 
included in the analysis Unlike the fully turbulent +e where nonlinear phase scrambling of the RuctUations 
affects the Row field even in proximity to the wall, the early stage transition regime Ructuations studied here 
are influenced  cross the boundary layer by the solid boundary. The dominating dynamics in the disturbance 
kinetic energy and dissipation rate equations are described. These results are then used to formulate transition- 
sensitized turbulent transport equations, which are solved in a two-step process and applied to zero-pressure- 
gradient flow over a flat plate, Computed results are in good agreement with experimental data. 

I. Introduction 

A current challenge in the prediction of wall-bounded turbulent flow fields within the realm of single-point closures 
is to consistently predict the (upstream) flow field and location of the natural transition region. The most widely used 
method for predicting natural transition is the eN method (see, for example, Lhela and Giles'), combined in some 
fashion to a turbulent flow solver. But this technique can be cumbersome and often requires considerable effort on the 
part of the user.' 

Schmidt and Patan& analyzed the natural capability of low-Reynolds-number K-E models to simulate boundary- 
layer transition. Although there were significant limitations regarding accuracy, the models were considered to be 
useful as predictive engineering tools. Wilcox4 took advantage of the capability of two-equation models to describe 
nonlinear growth of flow instabilities to develop a modified K-w model that predicts transition. Walters and Leylek5 
developed a single-point method that accounted for the growth of Tollmien-Schlichting waves (for natural transition) 
and also employed an additional transport equation to represent the growth of nonturbulent streamwise fluctuations 
(for bypass transition). Wang and Perot6 applied a non-equilibrium turbulent potential model to both natural and 
bypass transition. 
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Examplcs of othcr transition-sensitized turbulence models. applicable to naturally transitioning Ilows. exist in thc 
literature,'-"' but their development has been based more o n  empirical grounds. In contrast. transition-sensitized 
turbulence models, applicable to intermittent flows'' and flows with bypass transition.".'3 have bcen extensively 
studied and refined over the last decade. 

Motivated by the success of models in  flows with bypass transition. a methodology is pursued here that can lcad 
to the development of models applicable to generic flows in a natural, low-disturbance environment. In order to 
develop a general linkage between the transitioning laminar flow and the turbulent How in a developing boundary 
layer, i t  is necessary to have a common mathematical framework from which the disturbances in  both regimes can be 
described. In previous studies,"." such a framework was developed by coupling a deterministic description of the 
evolution of disturbances in the laminar regime with an analysis o f  an ensemble of such disturbances. The approach 
was based on the observation that, even in the laminar regime, every How is sub.ject to an inevitable uncertainty in 
initial conditions. Therefore. although each individual disturbance evolves deterministically, a probability distribution 
must bc introduced for the calculation of ensemble mean properties of the various disturbance statistical moments. 

The mathematical methodology developed previously is now extended to a spatially devcloping boundary layer. 
This study focuses on the earliest stages of transition in a low disturbance environment where the disturbance ampli- 
tudes are small enough that nonlinear interactions can be neglected. Most current Reynolds-averaged Navier-Stokes 
(RANS) type closure models have difficulty representing pre-transition flow fields and transition location, particularly 
with nonzero pressure gradients or for three dimensional mean flows. Although three dimensional mean flows are not 
considered here, the effects of zero. favorable, and adverse pressure gradients on the kinetic energy and dissipation 
rate budgets are considered. The information obtained from these balance equations is used to guide the formulation 
of a unified model, which is then applied to the flow over a flat plate in zero pressure gradient. 

11. Theory 

A flat. solid-walled boundary is considered. The incompressible flow analysis focuses on downstream locations 
away from any leading-edge effects. The three-dimensional, laminar disturbance modes under consideration are 
bounded solutions of the linearized Navier-Stokes equations. Linear disturbance fields are generated that are deviations 
from an ensemble-mean boundary-layer velocity field given by the Falkner-Skan family of solutions, U ( R e .  P. sa), 
applicable to flow fields with zero, adverse and favorable pressure gradients. The effects of pressure gradient are in- 
troduced through the parameter p: @ = 0, zero pressure gradient; < 0, adverse pressure gradient; f l  > 0, favorable 
pressure gradient. 

The velocity and pressure disturbance fields can be constructed from disturbance mode solutions by considering 
an ensemble of linear superpositions of modes with mode amplitudes @(w, k ~ ,  ~ 1 0 )  so that 

where ( k l ( R e , w ,  k g ) , O ,  kg )  is the wave vector in coordinate directions (3c1,x2,zg) associated with the most unstable 
mode, ( k l  complex and kg real). w is the (real) frequency, 210 is the position where the disturbance mode originates, 
and uz and ?j are the disturbance velocity and pressure profiles for the most unstable mode. This ensemble is de- 
scribed by a probability distribution for the amplitudes so that their mean, (Q(IJ, k g , x 1 0 ) )  is zero, and covariance is 
homogeneous (xl and .rg-directions) and stationary, 

(@*(w, kQ,21O)@(iJ', k;, xio)) = S(w - w')S(k ,  - k;)S(zlo - zi())P(w, kQ,  210) .  (3) 

Assuming that w, k ~ ,  and zl0 are independent random variables, the probability density P ( w ,  k:3,%10) is partitioned 
as 

p(u ,  k3,ZlO) = Pw(w)pk,(k3)P,,,,(TlO). (4) 
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The frequency space probability density 
spccuum 

is assumed to correspond to band limited white noise with a flat 

1 

( 5 )  
UJL. < UJ < UJH 

othernrise 
where W L  = 0.04 and ~ J H  = 0.08 are chosen to  encompass the region of disturbance growth computed from linear 
stability theory. For the spanwise wavenumber probability density, the central limit theorem argues in favor of a 
Gaussian 

Puiwj = { iu'H 

with variance o2 large enough to encompass a sufficient range of energetic oblique modes. It was found that the 
results did not change for 2 0.1. In this study 0 = 0.1 was chosen and k3 values ranged from -0.3 to 0.3. The 
disturbance modes are assumed to originatc with cqual probability along the boundary layer ia accordance with the 
assumed homogeneity of the freesweam turbulence field. In order to ensure that the same disturbance ensemble is 
generated at each streamwise location al. the probability density function Pr,"(xlO) is chosen to have the form 

(7) 

This eliminates the exponential growth factor in Eqs. ( 1 )  and (2) ,  and ensures that each disturbance mode has the same 
weight. 

The second-moment correlations can be formed from the disturbance velocity and pressure fields given in Eqs. (1) 
and (2). For example, the disturbance stress tensor is given by 

?r10(-730) = db-1 - 210) 

= . t J ~ d k 3 P , ( w ) P c , ( k 4 ) ( Z j : 6 1 + ~ ~ l i ; ) ,  2 (8) 

with the disturbance kinetic energy, K = r,,/2, and the disturbance isotropic dissipation rate is given by 

Note that, although streamwise homogeneity in the choice of ensemble has been maintained, all disturbance cor- 
relations retain a dependence on x1 through either a direct Reynolds number dependence (as in the disturbance dissi- 
pation rate) or through the implicit Reynolds number dependence of C, and kl. Finally, in order to compare results at 
different values of Reo and p, the kinetic energy of the disturbance field at each Reo and /3 is normalized such that 
the integral of the kinetic energy across the boundary layer in x2 is unity. It is now possible, from these quantities, to 
construct a detailed mapping of the ensemble-averaged disturbance field. 

A. Disturbance energy budget 

The derivation of the transport equations for the disturbance kinetic energy, K = ~ , ~ / 2 ,  follows directly from the 
linearized Navier-Stokes equations coupled with an average over an ensemble of disturbances described by the distri- 
bution P(u,  kj, xlO). The resulting transport equation can be written as 

D K  - = P - & + I 7 + D  
Dt 

3 of 16 

American Institute of Aeronautics and Astronautics Paper 2005-0523 



where 

are, respectively. the disturbance energy production, pressure-transport of disturbance energy, and viscous diffusion of 
disturbance energy. The disturbance energy dissipation rate is E given in Eq. (9). 

Using the solutions I L ,  and p (Eqs. ( I )  and (2)) obtained from the linearized disturbance equations coupled with 
the probability density distribution (Eq. (4)), the components of the disturbance energy equation can be obtained. It 
is instructive to examine the behavior of the disturbance ensemble at different streamwise locations. At low Reo (not 
shown) where there arc no growing modes in the ensemble, the disturbance kinetic energy decays (DI</Dt < 0) 
because production, the contribution from dissipation and viscous diffusion are all negative. Only pressure-transport 
contributes positively to the energetic balance over most of the layer. Very near the wall. the dynamic halance is 
between the kinetic energy dissipation rate and viscous diffusion, which is analogous to the fully turbulent case very 
near the wall. 

Figures 1 and 2 show the energy budget across the boundary layer at two different values of Reo. At each value 
of Res, the distributions of energy production, dissipation rate, pressure-transport, and viscous diffusion are shown. 
Here Dh-/Dt  is calculated as an instantaneous quantity, and not as a tinite difference. Figure 1 shows the energy 
balance at Reo = 393; a region of the flow where some modes included in the ensemble are unstable. At this value 
of Reo, there exists regions of the boundary layer where, for example, production is positive and pressure-transport is 
negative although overall D K / D t  < 0. Very near the wall the balance is predominantly between viscous diffusion 
and disturbance dissipation rate. Figure 2 shows the energy balance at Reo = 1040. Increasing the Reynolds number 
causes an increase in the magnitudes of all of the terms in the balance. At larger values of Reo, the qualitative features 
of the energetic balance remain unchanged with only the tails of each distribution decaying more slowly with 2; 

reflecting the downstream boundary-layer growth. At this and larger values of Reo. the kinetic energy is growing with 
D K / D t  > 0 across the boundary layer. Again, the near wall balance is between viscous diffusion and disturbance 
dissipation rate. It is apparent from Fig. 2 that, outside of the very near-wall region, the production and pressure- 
transport have opposite sign and are nearly proportional to one another although viscous diffusion also contributes 
to the balance. It is possible to show that this proportionality between the pressure-transport and energy production 
can be established through an analysis of the Poisson equation for the pressure fluctuations. In addition, the role of 
viscous diffusion in the dynamic balance across the boundary layer differs from the turbulent regime and changes with 
Reynolds number. In the fully turbulent case, the viscous diffusion changes sign with distance from the wall; however, 
for the linear disturbances examined here, the viscous diffusion is positive across the boundary layer at Re = 1040, 
and only changes sign at the lower Reynolds number. 

The effect of imposed pressure gradient on the disturbance kinetic energy budget is shown in Figs. 3 and 4 at Reo = 
1040. In the adverse pressure gradient case (0 < O), the dynamic balance between the terms in the transport equation 
remain unchanged; however, there is a broadening of the distribution across the layer and an overall substantial increase 
in the amplitude levels associated with each term. For the favorable pressure gradient case shown in Fig. 4, the dynamic 
balance is significantly altered qualitatively from the zero pressure gradient case. The balance is more consistent with 
the Reo = 393 zero pressure gradient case shown in Fig. 1. At this streamwise station, the ensemble of disturbances 
included both stable and unstable modes, but the overall balance showed a decay of disturbance kinetic energy across 
the boundary layer. 

These results confirm that even though the individual disturbance modes satisfy the linear Navier-Stokes equations, 
an ensemble of such disturbances can display a complex range of energetic dynamics that characterize the early stage 
transition regime of a developing flow. In the next section, the dynamic balance of the disturbance dissipation rate is 
examined. 
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B. Disturbance dissipation rate budget 

The transport equation for the disturbance dissipation rate E is also directly derivable from the linearized momentum 
equations. The resulting f ~ r m  is given by 

where 

are, respectively, mixed production. production by mean velocity gradient, gradient production, destruction. pressure- 
transport, and viscous diffusion. (The notation used here is consistent with the notation used by Rodi and Mansour.’6) 
Analogous to the treatment of the DK/Dt term, DE/Dt is not a finite difference but is computed as an instantaneous 
quantity. 

Figures 5 and 6 show the balance of terms across the boundary layer for the disturbance dissipation rate budget. 
With the exception of the destruction and viscous diffusion of dissipation, which essentially balance out across the 
entire boundary layer, all terms are negligible. This behavior suggests that in the absence of a production mechanism 
associated with vortex stretching, a nonlinear effect, direct dissipation of disturbance energy is confined to regions in 
close proximity to the wall. In contrast with the disturbance energy balances, the same (qualitative) dynamic balance 
is achieved for the two values of Reo shown and was also found for all values of Re0 at which these calculations were 
carried out (Re0 5 2000) The only change that was found was the broadening of the distribution across the layer with 
increasing Reo. While energetic equilibrium (DK/Dt = 0) only occurred at a single value of Reg, Fig. 5 shows 
that D€/Dt is very small and x 0 compared to the dominant terms, destruction and viscous diffusion of dissipation. 
throughout the entire range of Re0 values studied. In fact, it was found that DE/Dt was always at least three orders 
of magnitude smaller than the dominant terms. 

Although not shown, the dissipation rate dynamics are relatively insensitive to the imposition of pressure gradi- 
ent on the flow. This once again shows that the disturbance dissipation rate is not a (significant) contributor to the 
disturbance dynamics in the early stage transition regime. 

HI. Model 

The Reynolds averaged Navier-Stokes approach for predicting turbulent flow fields continues to be the primary 
engineering tool for calculating entire flow fields at high Reynolds numbers. However, closure models ranging from 
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algebraic to differential stress models usually cannot correctly predict the transition process. Nevertheless, in  wall- 
bounded flows for example, the success of a turbulence model is often judged by its ability to predict the developing 
flow field. Such an assessment is often clouded by the fact that the region of transition is not well-determined by the 
turbulence model. 

In the previous section, a set of transport equations for the disturbance kinetic energy and (isotropic) dissipation 
rate were analyzed. The disturbance variables were ensemble averages of deterministic disturbances obtained from 
the linear Navier-Stokes equations, and associated with a chosen probability density function, Eq. (4). While the 
probability distribution associated with the linear disturbances may be different than that for the turbulent fluctuations, 
the means associated with both ensembles are formed similarly. Thus, as was done in the last section. quantities such 
as the kinetic energy and dissipation rate and their respective transport equations can be analyzed analogous to those 
associated with the turbulence fluctuations. 

As assumed throughout this analysis, the ensemble of disturbances examined are representative of the disturbance 
field in the early stages of a naturally transitioning wall-bounded flow.17 The budgets discussed earlier can then be 
used, as in the development of RANS models for turbulent flow, to develop a RANS-type model for the early stage 
transition regime. The low Reynolds number (Reo = 393) results, where the kinetic energy production is negative, are 
not of interest here, since they represent a regime in which disturbances decay instead of transitioning into turbulence. 
Rather, the results for Reo = 1040 with zero and adverse pressure gradient are relevant and will be used. 

The focus of this analysis is on linear eddy viscosity two-equation models. The eddy viscosity is ordinarily 
associated with turbulence, but in the current analysis it is also considered a disturbance viscosity that applies to linear 
disturbances in the early stages of transition. As in the turbulent case, the task then is to determine closure models for 
the destruction, pressure transport, and diffusion terms that appear in the disturbance kinetic energy and dissipation 
rate equations. At the outset, it is actually necessary to only consider models for the pressure-transport and diffusion 
terms. The destruction of disturbance kinetic energy is governed by the disturbance dissipation rate equation itself. 

The base IC-E turbulence equations chosen for the purposes of the current investigation are written: 

l a  - = P - € + - -  D K  
Dt p axj 

DE E c2  1 d - -  - -C,,P - CEZ’f2 + -- 
Dt K h- p a x j  

where P = --r,,dU,/dx, FZ bTs,,s,j is the production term, and the resulting eddy viscosity is given by: 

The constants are: c,, = 1.44, CE2 = 1.83, Ok = 1.0, 0, = K 2 / [ n ( c E 2  - cZl)], C, = 0.09, and K = 0.41. The 
function f2  is given by: 

f 2 =  1 -exp -- ( 2) 
where R e K  = p&d/p., and d is the distance to the nearest wall. For simplicity, the function f c l  (which is typically 
used to insure proper asymptotic behavior of the turbulent variables as the wall is approached) is currently taken to be 
unity. 

Inspection of Fig. 2 shows that the plots of disturbance energy production, diffusion and pressure-transport assume 
similar shapes from x: M 10 to x; z 60, and combine to produce a positive DK/Dt.  This suggests that the sum 
of these three terms may be modeled as an effective disturbance energy production Pd. Regarding the dissipation rate 
equation, on the other hand, the data indicate that DElDt FZ 0 throughout the layer. These ideas lead to the following 
possible forms for the modeled transport equations for the disturbance energy and dissipation rate: 

b 
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DE - = 0. 
Dt 

(26) 

where Pd represents the sum P + II + V appearing in l3q. (10) and is modeled as CdP'. For this two equation 
formulation, a Boussinesq type relation is assumed for the disturbance shear Stress so that the production P' can be 
written in the form ~ U ~ S , , S ~ ~ ,  with v d  the disturbance mode viscosity ( v d  = ck,,j I<2/c). 

In order to bridge together the two flow regimes (represented by Eqs. (21) & (22) and Eqs. (25) & (26)), an indicator 
function Z is used. Z represents the probability that the flow at any given point is turbulent. with 0 5 Z 5 1. Thus, 
2 = 0 represents purely laminar flow and Z = 1 represents purely turbulent flow. The precise form that the Z-equation 
needs to take is an ongoing subject of active research. Currently, a provisional measure has been taken in an effort 
to reproduce the known dependence of transition on freestream turbulence intensity. This form of the 2-equation is 
derived below. 

The original K and E equations are modified using the function Z such that when Z = 1 the fully turbulent 
equations are recovered, and when Z = 0 the laminar disturbance equations are recokered. (However, as an aid to 
improved numerical behavior of the solution, the disturbance form of the equations are modified to retain dissipation 
terms. The destruction term in the dissipation rate equation is also retained in order to prevent too-rapid freestream 
eddy viscosity decay.) The final forms of the I< and E equations are: 

l a  
-- - (1 - Z)Pd + 2P - E + -- DK 
Dt P 'xJ 

DE & c2 1 a - =2-c,~P-Cs3Lf2+-- Dt K --A- pax, 

(27) 

Here, Pd 2yTs2,s l , (cdc,d/cf i ) ,  c d  = 0.3, and c f i d  = 0.026. 
The indicator function Z should obey an evolution equation that produces the correct dependence of transition 

location on the freestream turbulence level Tu. As freestream turbulence increases the transition location for a flat plate 
boundary layer is known'* to move forward along the boundary layer, Le., to smaller values of streamwise coordinate. 
The indicator function should also be related to some local quantity that gives a measure of the level of turbulence 
within the boundary layer. Motivated by these considerations, the behavior of the turbulence Reynolds number Ret = 
p K 2 / p c  was studied for laminar (1 = 0) solutions of Eqs. (27) and (28). (Note that Ref is proportional to the 
eddy viscosity ,UT appearing in the production and transport terms of the disturbance kinetic energy and dissipation 
rate equations.) Figure 7 shows contour plots of Ret for three different levels of Tu. The higher the freestream 
Tu. the higher the maximum Ret levels. and the further forward the location where Ret first exceeds the freestream 
level. This suggests that the rate of increase in the indicator function could be related to Ret. As a first provisional 
attempt at constructing the 2-equation, a source term proportional to the local value of Ret minus its freestream value 
was introduced. With this choice of source term, Z begins to increase when Ret exceeds its freestream value. A 
diffusion term was also included. This equation produced the desired dependency of transition location to freestream 
Tu, but it should be considered work-in-progress. (For example, a destruction term may also be desirable to provide 
relaminarization capability.) The current form of the indicator function transport equation is given by: 

-czp;+-- -- 
p a x j  a [" crzaxj "I DZ 

Dt 
-- 

where Pz = Ret - Ret,m, Cz = 4 and UT = 1. The production term is limited via P; = min[max(Px, 0). 501, and 
Z is limited to be between 0 and 1. Eqs. 27.28, and 29 are solved in conjunction with the RANS equations. A specific 
procedure is necessary for obtaining consistent solutions to the equations: 

1. First, solve only RANS plus the two disturbance equations (Eqs. 27 and 28 with Z set to zero). This step 
establishes the "disturbance levels" of K and E in the vicinity of the body. It is important that this step be fully 
converged (the final answer is strongly dependent on the level of convergence of this step). 

2. Restart from the solution of the previous step using RANS plus all three equations, Eqs. 27, and 28, and 29. 
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The boundary conditions at solid walls are: Ktf, = 0, ( 8 ~ / h ) . ,  = 0, and I,f3 = 0. At lreestream inflow the three 
quantities are taken to be their freestream values, and at freestream outflow they are extrapolated from the interior of 
the domain. 

The freestream conditions are established as  follow^. For the indicator function, 1, = 0. Given a freestream 
turbulence intensity Tu (in percent, defined as Tu = lOOJ-), the freestream nondimensional Km is given 
by: h-k = = 1.5[(Tt~)(Al,)/lOO]~. In the current methodology, the freestream Ret,, is taken to be 
proportional to Km. Therelore, freestream E, is proportional to K,. One advantage to using this relationship 
is that the resulting decay rate of the turbulence quantities in the freestream is identical regardless of freestream Tu. 
Currently: E&, = ~ ~ p ~ / ( p ~ o , $ )  = ( 5 . 4 ~  lO-')KL. Table 1 gives freestream levels for various Tu, for ATm = 0.2. 

* 

Table 1. Example freestream levels for Af, = 0.2 

Tu, percent 
0.042 

0.1 
0.2 
0.26 
0.34 
0.70 
1.25 

= Ii,/a& 
1.058 x 10-8 
6.000 x lo-' 
2.400 x 10-7 
4.056 x 

6.936 x lo-' 
2.940 x lo-' 
9.375 x 10-6 

Ret>, 
0.20 
1.1 1 
4.44 
7.5 1 
12.8 
54.4 
173.6 

Pt,m 
0.018 
0.10 
0.40 
0.68 
1.15 
4.90 
15.6 

Like the original k-E model itself, the current method does not maintain freestream turbulence levels (i.e., there 
is decay of the turbulence quantities with distance from the inflow boundary, where freestream levels have been set). 
The current model also shares the characteristic that for high freestream Tu (greater than 0.5% or so), the freestream 
Ret.ns (or pLt,oo) levels can get very large. See Table 1. With unrealistically high background eddy viscosity levels, 
laminar regions in the flow are corrupted. Unfortunately, if one tries to correct this behavior by increasing E,, then 
freestream decay rate becomes much too rapid. The current levels were chosen as a compromise between rapidity of 
decay (current freestream eddy viscosity decays to 74% of its inflow value by the time it reaches the plate leading 
edge) and having excessively high freestream eddy viscosity levels. In any case, the primary focus of this method is on 
natural transition, which should be applicable only for low Freestream Tu. A focus of future work will be developing 
the capability to maintain freestream turbulence levels in the method with little or no decay. 

IV. Results 

The method described in the last section was implemented into the finite-volume RANS code CFL3D of Krist 
et aI.l9 Results were generated for a flat plate in zero pressure gradient, at Re = 6 million based on plate length 
and M = 0.2. All results were two-dimensional, described from this point forward by the (z, y) coordinate system 
notation. A fine grid of size (385 x 129) was used, along with a medium (193 x 65) and coarse (97 x 33) level created 
by using every other grid point from the next finer grid. The grid extended from an 2-location of -1/3 to 1, with the 
plate itself located between 0 and 1. The grid extent in the y-direction was approximately 1. The minimum spacing at 
the wall yielded an average minimum yf of approximately 0.2 on the fine grid, 0.5 on the medium grid, and 1.1 on 
the coarse grid. 

Figure 8 shows skin friction coefficient results plotted as a function of Re, (= U,Z/Y,) using the medium grid 
for a range of different Tu, from 0.042% to 1.25%. Transition start locations were taken from the experimental results 
of Schubauer and Skramstad2' (for 0.042 < Tu < 0.344), and from Abu-Ghannam and Shawl' (for Tu  = 1.25%). 
Computed results agreed well with the experiments at the intermediate levels (0.1 < Tu  < 0.34). Although the 
results at Tu = 1.25% predicted the transition start location reasonably well, the computed C f  levels in general were 

* 

e 
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poor because of the corrupting influence of the too-high freeslrcam eddy viscosity. as discussed in the last section. At 
Ti/ = U . U - W k .  the computations predicted transition to be lurther aft than in thc experiment. However. experiments 
often show widely different transition locations at very low Tu levels. due to different noise levels in the wind tunnels. 
See we] IS. 

Sensitivity of the results to grid size are shown in Fig. 9, for the case with Tu = 0.2%. The transition location 
changed by about 3.5% of the plate length between the medium and fine grids, and by about 5 8  between the coarse 
and medium grids. These levels of grid dependence are not surprising if one considers that the disturbance equations 
are likely to be quite sensitive to the streamwise gradients. The Re, at the starting location of transition are plotted as 
a function of Tu in Fig. 10; the figure includes the effect of grid density. The experimental “best-fit“ transition start 
location curve from Abu-Ghannam and ShawlR is also plotted. There was an excellent correspondence between the 
CFD results and the experimental correlation. 

V. Conclusions 

The dynamics of an ensemble of disturbances in boundary-layer flow with and without pressure gradient was 
studied. The individual disturbance modes were solutions of the linearized Navier-Stokes equations and the probability 
density function associated with the ensemble accounted for distributions in spanwise wavenumber. frequency and 
initial spatial position. Such an ensemble represents the early stages of a transition disturbance field which ultimately 
leads to a fully turbulent field. 

An analysis of the dynamic balance in the disturbance kinetic energy and dissipation rate equations showed be- 
havior that contrasted with the fully turbulent case at both low Reynolds numbers and in near-wall regions. This new 
insight was critical in properly representing the dynamics in the linear disturbance region. While no self-similar behav- 
ior was reached, the qualitative features of the dynamic balance became independent of Reo and showed that energy 
production, pressure-transport, and viscous diffusion dominated across the boundary layer with a small contribution 
from dissipation rate. The dissipation rate only played a role in very close proximity to the solid boundary where it 
balanced the energy diffusion. 

The results obtained here provided new insight into the dynamic balance of an ensemble of disturbances in the 
early stages of a (naturally) transitioning boundary-layer flow in a low disturbance environment. The information was 
used to develop transport equations for the ensemble of disturbances, which were subsequently coupled using an inter- 
mittency function to corresponding transport equations valid in the fully turbulent regime. The resulting three-equation 
model was solved via a two-step procedure. Results for a zero-pressure-gradient flat plate agreed well with experimen- 
tal data for freestream turbulence intensity levels at and below 0.34%. Transition locations were also predicted in good 
qreement with experiment at higher freestream intensities, but issues related to freestream turbulence decay cormpted 
the quality of those results. Developed from first principles, this method holds promise as a transition-prediction tool 
for the Reynolds-averaged Navier-Stokes equations, with no need for empirical correlations. 
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Fgure 1. Disturbawe energy &alance at Werent downstream positions (zero pressure gradient), Reo = 393. 
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Fgure 2. Disturbance energy balance at different downstream positions (zero pressure gradient), R e o  = 1040. 
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Figure 3. Effect of adverse pressure gradient (0 = -0.15) on disturbance kinetic energy balance, Reo = 1045. 
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Figure 4. Effect of favorable pressure gradient (p  = 0.15) on disturbance kinetic energy balance, Reo = 1041. 
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F i 5 .  DishrrbaMp dissipation rate balance at dif€erent downstrePm positions (zero p'psuup gradient), Reo = 393. 
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Figure 6. Disturbance dissipation rate balance at dflerent downstream positions (zero pressure gradient), Reo = 1040. 
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Figure 7. Contour plots of Ret over flat plate (hl  = 0.2, Re = 6 x lo6) for three different freestream Tu levels, using disturbance 
equations. 
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Figure 8. Skin friction coefficients on flat plate for merent Tu, medium grid. 
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Figure 9. Grid density effect on skin friction coefficient for flat plate, Tu = 0.2%. 
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Figure 10. Rez at transition start location for flat plate as a function of Tu. 
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